IEFAS

JEFAS-Synthesis

Conclusion and perspectives

Time-Scale Synthesis of Non-Stationary Signals

Adrien Meynard¹, Bruno Torrésani²

¹ Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, Lyon, France ² Aix-Marseille Univ, CNRS, 12M, Marseille, France

> Grenoble November 10, 2023

- 1 Introduction : nonstationarity
- 2 Locally deformed signals : an analysis-based approach
- 3 Locally deformed signals : a synthesis-based approach
- 4 Conclusion and perspectives

Stationarity

Definition (Stationarity)

A random process X is said to be second-order stationary if :

$$\blacksquare \mathbb{E}\{X(t)\} = m_X, \ \forall t ,$$

$$\blacksquare \mathbb{E}\{X(t)X(\tau)\} = k_X(t-\tau), \ \forall (t,\tau) \ .$$

Spectrum :

- Gives the distribution over frequencies of the power of X.
- Many methods to estimate the spectrum from a single realization of the stationary process X (e.g. Welch method).

Introduction			
00000	00000000	000000000	0000
Nonstationarity			

The stationarity assumption is often irrelevant to study real-life signals, such as audio signals, or physiological signals.

$\Rightarrow \textbf{Questions}:$

- 1 Which classes of nonstationarity should we consider?
- 2 How should we analyze nonstationarity? In particular, how to extend spectral estimation to nonstationary signals?

JEFAS 000000000 JEFAS-Synthesis

Conclusion and perspectives

Broken stationarity : a class of nonstationarity¹

Two key ingredients :

- **1** A zero-mean stationary random process X.
- 2 A deformation operator that breaks stationarity \mathcal{T} .

We observe the "deformed" process Y given by :

 $Y = \mathcal{T}X$.

 \Rightarrow We limit ourselves to some physically relevant forms of operators.

^{1.} H. Omer. Modèles de déformation de processus stochastiques généralisés. Application à l'estimation des non stationnarités dans les signaux audio. PhD thesis, Aix-Marseille Université, 2015

Introduction		
000000		
Deformation o	perators	

A 15 1 1 1 1 1

Amplitude modulation

$$\mathcal{A}_{lpha}: \qquad \mathcal{A}_{lpha} x(t) = lpha(t) x(t) \; ,$$

with $\alpha \in C^1$ such that $\forall t, \ 0 < c_{\alpha} \leq \alpha(t) \leq C_{\alpha} < \infty$.

Frequency modulation

Introduction		
000000		
Deformatio	n operators	

Time warping

$$\mathcal{D}_\gamma: \qquad \mathcal{D}_\gamma x(t) = \sqrt{\gamma'(t)} x(\gamma(t)) \;,$$

where $\gamma \in \mathcal{C}^2$ is a strictly increasing function such that

$$0 < c_\gamma \leq \gamma'(t) \leq C_\gamma < \infty, orall t$$
 .

Any combination of the above deformations

From a single realization of the nonstationary random process Y, we aim at estimating simultaneously :

- The spectrum \mathscr{S}_X of the underlying stationary random process X,
- The deformation operator \mathcal{T} .

JEFAS	
0000000	

1 Introduction : nonstationarity

2 Locally deformed signals : an analysis-based approach

- Model
- Wavelet transform and approximation
- Estimation algorithm : JEFAS
- Applications to audio signals

3 Locally deformed signals : a synthesis-based approach

4 Conclusion and perspectives

000000000

JEFAS-Synthesis

Conclusion and perspectives

Model and goal

Model :

 $Y=\mathscr{A}_{\alpha}\mathscr{D}_{\gamma}X\ .$

where X is a stationary process.

- Relevant to model physical phenomena, such as Doppler effect, speed variations, or animal vocalizations.
- **Goal** : From a single realization of the process *Y*, estimate simultaneously :
 - the spectrum \mathscr{S}_X of the underlying stationary process X,
 - the deformation functions α and γ .

00**0**00000

JEFAS-Synthesis

Conclusion and perspectives

Wavelet transform

Definition (Wavelet transform)

$$\mathcal{W}_{\mathsf{x}}(s, au) = \langle \mathsf{x},\psi_{s au}
angle$$
 avec $\psi_{s au}(t) = 2^{-s/2}\psi\left(2^{-s}(t- au)
ight)$

where ψ is the analysis wavelet.

FIGURE – "Sharp wavelet" for two different values of s.

000000000

JEFAS-Synthesis

Conclusion and perspectives

Approximated behavior

Approximation theorem

The wavelet transforms of X and Y are approximately related by :

$$\mathcal{W}_{Y}(s, au)pprox \widetilde{\mathcal{W}}_{Y}(s, au)=lpha(au)\mathcal{W}_{X}\left(s+\log_{2}(\gamma'(au)),\gamma(au)
ight)\;.$$

The error term $\epsilon = W_Y - W_Y$ is a zero-mean random process, whose variance $\mathbb{E}\left\{ |\epsilon(s, \tau)|^2 \right\}$ depends on the regularity of α and γ' , and the speed of decay of ψ .

	JEFAS	
	0000 0 0000	
Estimation	procedure	

Fix $\tau \Rightarrow$ Unknown parameters :

• \mathscr{S}_X • $\theta_1 = \alpha(\tau)^2$ • $\theta_2 = \log_2(\gamma'(\tau))$

Assumption : X is a zero-mean stationary Gaussian process. \Rightarrow Each column of the wavelet transform of $Y : \mathbf{w}_{Y,\tau} \sim C\mathcal{N}_c(0, \mathbf{C}(\Theta))$, with covariance matrix :

$$\mathbf{C}(\Theta)_{ij} = \theta_1 2^{(s_i+s_j+2\theta_2)/2} \int_0^\infty \mathscr{S}_{\mathbf{X}}(\xi) \overline{\hat{\psi}}(2^{s_i+\theta_2}\xi) \hat{\psi}(2^{s_j+\theta_2}\xi) d\xi \,.$$

 \Rightarrow The log-likelihood is given by

$$\mathscr{L}(\Theta) = -\frac{1}{2} \ln |\det(\mathbf{C}(\Theta))| - \frac{1}{2} \mathbf{C}(\Theta)^{-1} \mathbf{w}_{y,\tau} \cdot \mathbf{w}_{y,\tau}$$

JEFAS

JEFAS-Synthesis

Conclusion and perspectives

Estimation algorithm : JEFAS

The JEFAS (*Joint Estimation of Frequency, Amplitude and Spectrum*) algorithm consists in an alternating estimation.

Initializations :

- Initialize the power spectrum estimate.
- Initialize the amplitude modulation by a constant.
- $k \leftarrow 1$

while stopping criterion = FALSE do

- Time warping : Estimate $\tilde{\alpha}^{(k)}$ by ML, $\forall \tau$.
- Amplitude modulation : Estimate $\tilde{\gamma}^{(k)}$ by ML, $\forall \tau$.
- Spectrum : Estimate $\tilde{\mathscr{I}}_{\chi}^{(k)}$ from the "rectified" wavelet transform.
- $k \leftarrow k+1$

end while

	JEFAS	
	000000000	
Doppler effect		

Assumptions :

- A source emits a stationary sound.
- The source follows a uniform linear motion, at speed V.
- From a fixed station, we record the sound emitted by the source.

 \Rightarrow Due to the Doppler effect, the sound we receive is time-warped, with :

$$\gamma'(t) = \frac{c^2}{c^2 - V^2} \left(1 - \frac{V^2 t}{\sqrt{d^2(c^2 - V^2) + (cVt)^2}} \right)$$

00	000	\mathbf{v}

JEFAS 000000000 JEFAS-Synthesis

Conclusion and perspectives

Doppler effect

Comparison to the theoretical function with : d = 5 m and V = 54 m/s.

JEFAS

JEFAS-Synthesis

Conclusion and perspectives

Spectral analysis of a broadband wind sound

FIGURE – Top : Scalograms of the original signal (left) and the estimated stationary signal (right). Bottom left : estimated time warping and amplitude modulation. Bottom right : estimated spectrum.

		JEFAS-Synthesis	
000000	00000000	00000000	0000

2 Locally deformed signals : an analysis-based approach

3 Locally deformed signals : a synthesis-based approach

- Motivations and model
- Estimation algorithm : JEFAS-S
- Illustrations

4 Conclusion and perspectives

 Introduction
 JEFAS
 JEFAS-Synthesis
 Conclusion and perspectives

 000000
 000000000
 0000
 0000

 Locally harmonic signal

Signal of the form :

 $y(t) = A_1 \cos(2\pi\xi_1\gamma(t)) + A_2 \cos(2\pi\xi_2\gamma(t)) \; ,$

where γ' is the fast varying instantaneous frequency.

■ JEFAS : Interference patterns on the wavelet transform. ⇒ Approximated behavior does not hold.

 \Rightarrow JEFAS diverges.

JEFA5 000000000 JEFAS-Synthesis

Conclusion and perspectives

Spectral estimation : Analysis vs. Synthesis

1 Analysis-based approach \Rightarrow JEFAS and JEFAS-BSS

Model of nonstationarity : locally time-warped signals, of the form :

 $Y = \mathscr{D}_{\gamma} X \; ,$

where X is an arbitrary stationary process.

JEFAS 000000000 JEFAS-Synthesis

Conclusion and perspectives

Spectral estimation : Analysis vs. Synthesis

1 Analysis-based approach \Rightarrow JEFAS and JEFAS-BSS

Model of nonstationarity : locally time-warped signals, of the form : $= \mathscr{D}_{\gamma} X ,$ where X is an arbitrary stationary process. Introduction JEFAS JEFAS-Synthesis Conclusion and perspectives

Spectral estimation : Analysis vs. Synthesis

2 Synthesis-based approach \Rightarrow JEFAS-S

Synthesis model \Leftrightarrow Reconstruction formula :

$$y(t) = \operatorname{Re}\left(\sum_{s} (\psi_{s} * W_{s})(t)\right) + \epsilon(t) ,$$

where $W_s(t)$ are random time-scale coefficients, and $\epsilon(t)$ is a noise.

► Discretization of the problem :

$$\mathbf{y} = \mathsf{Re}\left(\sum_{n=1}^{N} \mathbf{\Psi}_{n} \mathbf{w}_{n}\right) + \boldsymbol{\epsilon} \; ,$$

where \mathbf{w}_n is the *n*-th column of the time-scale representation.

		JEFAS-Synthesis	
		0000 00 000	
Bavesian infe	rence		

• Likelihood : $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \, \sigma^2 \mathbf{I})$

$$p(\mathbf{y}|\mathbf{w}_n) = \mathcal{N}\left(\operatorname{Re}\left(\sum_{n=1}^{N} \Psi_n \mathbf{w}_n\right), \sigma^2 \mathbf{I}\right)$$

Prior : on the synthesis coefficients w_n

Uncorrelated vectors such that :

$$\mathbf{w}_n \sim \mathcal{CN}_c(\mathbf{0}, \mathbf{C}_n)$$
.

Covariance matrices C_n are translated versions of reference covariance function c :

$$[\mathbf{C}_n]_{mm'} = [\mathbf{C}(\theta_n)]_{mm'} = \mathbf{c}(\mathbf{s}_m + \theta_n, \mathbf{s}_{m'} + \theta_n) ,$$

where $\theta_n \in \mathbb{R}$ is the shift parameter.

		JEFAS-Synthesis	
		000000000	
Ectimation et	ratamu		

Estimation strategy

- **Expectation Maximization (EM) principle where :**
 - \bullet is the parameter,
 - \mathbf{w}_n is the latent variable.

EM steps

The update at iteration k relies on the following two steps :

■ Time-scale representation update

Maximum a posteriori estimation :

$$\tilde{\mathbf{w}}_{n}^{(k)} = rac{1}{2} \mathbf{C} \left(\widetilde{ heta}_{n}^{(k-1)}
ight) \Psi_{n}^{H} \mathbf{C}_{y} \left(\widetilde{ heta}^{(k-1)}
ight)^{-1} \mathbf{y} \; .$$

2 Nonstationarity parameter update :

$$\tilde{\theta}_n^{(k)} = \arg \max_{\theta_n} \ \mathscr{L}(\theta_n) - \frac{1}{2} \mathrm{Tr} \left(\mathsf{C}(\theta_n)^{-1} \mathbf{\Gamma}_n \left(\tilde{\boldsymbol{\theta}}^{(k-1)} \right) \right) \ ,$$

JEFAS-Synthesis

Conclusion and perspectives

Algorithm : JEFAS-S

Initialization : estimate $\tilde{\theta}^{(0)}$ and $\tilde{\mathscr{S}}^{(0)}$ using JEFAS.

- $k \leftarrow 1$
- while stopping criterion = FALSE do
 - Time-scale representation estimation : $\tilde{\mathbf{w}}_{n}^{(k)}$.
 - Time-warping parameter estimation : $\tilde{ heta}^{(k)}$.
 - Spectrum estimation : $\tilde{\mathscr{S}}_{X}^{(k)}$.
 - $k \leftarrow k+1$.

end while

- Alternating estimation \Rightarrow Similar to JEFAS.
- Convergence ensured by the EM principle.
- Additional estimation of the time-scale representation \Rightarrow JEFAS-S is slower to converge than JEFAS.

000000000

JEFAS-Synthesis

Estimated adapted

Conclusion and perspectives

Broadband synthetic signal

- Time-warping parameter estimation : not improved with respect to JEFAS.
- Allows denoising : improvement of **7.06 dB** of the Signal to Noise Ratio between the measurements \mathbf{y} and the reconstructed signal $\tilde{\mathbf{y}}_0$.

		JEFAS-Synthesis	
		000000000	
Locally ha	rmonic signal		

Signal of the form :

$y(t) = A_1 \cos(2\pi \xi_1 \gamma(t)) + A_2 \cos(2\pi \xi_2 \gamma(t)) ,$

where γ' is the (normalized) fast varying instantaneous frequency.

JEFAS-S : Prior of uncorrelation between $\mathbf{w}_n \Rightarrow No$ interference \Rightarrow JEFAS-S converges.

Time (s)

27 / 31

Time (s)

	Conclusion and perspectives
	0000

- **1** Introduction : nonstationarity
- 2 Locally deformed signals : an analysis-based approach
- 3 Locally deformed signals : a synthesis-based approach
- 4 Conclusion and perspectives

Conclusion

Summary :

Broken stationarities :

$$Y = \mathcal{T}X$$

- Locally deformed signals
- Multivariate locally deformed signals
- Locally harmonic signals
- Spectral estimation : Simultaneous estimation of the spectrum \mathscr{S}_X and the deformation operator \mathcal{T} .

Two estimation strategies :

- Analysis-based approaches
- Synthesis-based approaches

())

Formula 1

()))

())

Advertising

0000000000

JEFAS-Synthesis 0000000000 Conclusion and perspectives

https://eusipcolyon.sciencesconf.org/

IMPORTANT DATES

Submission of Special Session proposals	Jan. 14, 2024
Notification of acceptance of Special Sessions	Jan. 30, 2024
Submission of Tutorial proposals	Mar. 1, 2024
Full paper submission	Mar. 3, 2024
Paper acceptance notification	May 22, 2024
Camera-ready paper deadline	Jun. 1, 2024
3-Minute Thesis contest	Jun. 15, 2024

Submit your papers!