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The zeros of the spectrogram

Short-time Fourier transform (STFT) and spectrogram

For a real signal x(t) its STFT will be defined as:

Fx(t, ω) :=

∫ +∞

−∞
x(u)g(u − t)e−iω(u−t/2)du, (1)

with g(t) = π−1/4e−t
2/2. Then, the spectrogram is defined as:

Sx(t, ω) = |Fx(t, ω)|2. (2)

STFT and Bargmann transform

Considering z = ω + it, then the STFT can be written as:

Fx(t, ω) = Fx(z) exp
(
−|z |2/2

)
, (3)

where Fx(z) is the Bargmann transform.
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The zeros of the spectrogram

The Haddamard-Weierstrass Factorization
Being Fx(z) an entire function of order 2, it admits the following
factorization:

Fx(z) = zmeQ(z)
∏
n

(
1− z

zn

)
exp

(
z

zn
+

z2

2z2
n

)
, (4)

where zn are the zeros of Fx(z), m is the order of a (possible) zero
at the origin, and Q(z) is a quadratic polynomial.

• Sx(t, ω) can be characterized by the distribution of its zeros.

• This fact can be harnessed for signal detection (Flandrin
2015).

• Zeros also corresponds to the zeros of a Gaussian Analytic
Function (Bardenet 2018).
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Some work in progress

1. Spatial statistics on the zeros of the spectrogram on-the-fly.

2. Benchmark of controlled applications: zeros-based methods
vs. ridges/large values based methods.

3. A noise assisted approach for signal domain detection.
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1. Detecting zeros on-the-fly

Objective

• To do spatial statistics (envelope tests, triangulation) time
slice after time slice.

• Detection of zeros of S(t, ω) using time slices is more
challenging than in the time-frequency plane.

• Zeros of the analytic function Fx(z) corresponds to the local
minima of |Fx(z)| (Escudero 2021).

• The derivative of the phase of the STFT, however, exhibits a
pole-behaviour near the zeros (Auger 2012, Balazs 2015).
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1. Detecting zeros on-the-fly

Spectrogram
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2. Benchmark of controlled applications

Objective

• To determine what kind of regimes make the zeros based
methods a better option than traditional (for instance,
ridge-based) methods.

• Study a number of tasks (i.e. detection, filtering) and types of
signals.

• Explore the impact of different criteria for determining the
signal domain.
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3. A noise assisted approach for signal domain detection

Objective

• To obtain useful information from the position of zeros when
adding different realizations of noise to a signal.

• Inspired by other noise assisted methods (Wu & Huang 2009,
Colominas 2012).

• The zeros of the original signal suffer small position changes
when some low amplitude noise is added.

• Zeros nearer the signal should be more restricted in movement
because they are repelled from the signal domain.

• An optimal level of noise might exists in order to retrieve
information from the changes in the distribution of zeros.
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3. A noise assisted approach for signal domain detection
Noise Realizations’ SNR: 10 dB Noise Realizations’ SNR: 0 dB
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- Red dots are the original zeros of the signal.
- Green dots are the new zeros created by different realizations.
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3. A noise assisted approach for signal domain detection
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